Solution synthesis of crystallized AMO₄ (A=Ba, Sr, Ca; M=W, Mo) film at room temperature

R. DINESH, T. FUJIWARA, T. WATANABE

Center for Materials Design, Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-Ku, Yokohama 226-8503, Japan E-mail: dinus74@yahoo.com

K. BYRAPPA University of Mysore, Post Box No. 21, Manasagangotri, Mysore, 570 006, India

M. YOSHIMURA Center for Materials Design, Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-Ku, Yokohama 226-8503, Japan

A well-crystallized AMO₄ (A=Ba, Ca, Sr; M=W, Mo) films have been prepared at room temperature through a simple solution reaction in respective alkaline solution at higher pH ranging from 12–14. Adopting the corrosion principle for oxidation of metal substrate, these double oxide films were carried out in presence of chemical driving force without any special apparatus or devices. Hydrogen peroxide was used to enhance the dissolution rate of metal substrates. The driving force for the film formation and growth were high concentration of A²⁺, MO_4^{2-} ions with high pH conditions. Average grain sizes of 8–10 μ m with bipyramidal shaped particle were grown to the thickness of about 10–14 μ m after 3–6 hours treatment. The crystallization of AMO₄ was characterized by three-dimensional nucleation. This work demonstrates the possibility of fabrication of functional ceramic films directly from the aqueous solution in a single step by solution reactions. © 2005 Springer Science + Business Media, Inc.

1. Introduction

Preparation of alkaline earth molybdate and tungstate materials have been received much attention because of their significance in electro-optics and microwave ceramics [1, 2]. Different techniques including solid-state reaction [3], the flux method [4], Czochralski method [5, 6], hydrothermal method [7] and the co-precipitation route [8] was used for the preparation of single crystals, whiskers and particles. It is generally agreed that the thin film phosphor has superior resolution when compared with powder because of its inherently smaller grain size and less lateral scattering. Nevertheless, less extensive investigations have been made on preparation of these films. A variety of physical and chemical deposition methods including chemical vapor deposition [9, 10], evaporation method [11], sputtering evaporation [12], sol-gel processes [13, 14] and electrochemical method have been reported for the preparation of those films. They have still problems to get high quality films, i.e. compositional fractuations due to the difference of vaporization between A and MO₄ species and peeling off films by mismatching the ther-

0022-2461 © 2005 Springer Science + Business Media, Inc. DOI: 10.1007/s10853-006-4634-z

mal expansion between AMO₄ and the substrate in those deposition methods. In addition, these chemical vapour deposition and physical vapour deposition methods have essential problems to consume lots of energy and materials, which can hardly be recovered or recycled, thus they are regarded as environmental unfriendly. In these regards our group has proposed and developed Soft Solution Processing (SSP), where crystallized inorganic materials could be fabricated directly on appropriate substrates in the solution [15–24]. Cho *et al.* reported the formation of AMO₄ films on the M metal substrate by electrochemical or hydrothermal/ electrochemical methods [20–23, 24]. It requires anodic dissolution of M metal by electric current supply. Moreover, hydrothermal conditions above 100°C were often used to proceed the reactions.

Hydrogen peroxide has often been used in solution processing as an oxidizer. Xiao and co-worker deposited thin titania film consisting of anatase and rutile on Ti metal substrate when soaked in a TiOSO₄/ H_2O_2 and aged in hot water [25]. Ohtsuki *et al.* indicated that the treatment of Ti with a TaCl₅ containing

hydrogen peroxide solution was effective in providing in vitro bioactivity or the ability of materials to be covered with apatite in simulated body fluid [26]. Cheng et al. have developed novel aqueous chemical solution as a precursor both for LiNbO₃ powder and thin film [27]. In this method the hydrogen peroxide aqueous solution reacts with niobium and lithium alkoxide ethanol solution to form metal peroxide aqueous solution. Kudo et al. reported that H₂O₂ aqueous solution can react with metal alkoxides and form M-O-O-M' (M and M' metals) [28]. Lee *et al.* synthesized well crystallized nano ceria powders by hydrothermal synthesis using a mixture of H₂O₂ as the oxidizer and NH₄OH as mineralizer [29]. Woodhead reported novel approach for Ce (IV) oxide which is precipitated from Ce(III) nitrate solution using mixture of NH₄OH and H₂O₂ [30]. The role of H_2O_2 was to make it much easier to change the valence state of Ce ion from Ce (III) to Ce (IV).

However, in the present study we have demonstrated our first success in preparing crystallized AMO₄ (A= Ba, Sr, Ca, M = W, Mo) films at room temperature by using hydrogen peroxide with alkaline earth solution neither electric current supply nor special apparatus or devices were used. Here, oxidation and dissolution of the metal substrate was achieved by using hydrogen peroxide with alkaline earth solution.

2. Experimental procedure

A 99.9 wt%-pure tungsten or molybdenum metal substrate with dimension of $10 \times 10 \times 0.1 \text{ mm}^3$ and $10 \times 10 \times 0.2 \text{ mm}^3$ respectively (Niraco, Japan) were mechanically polished and degreased in acetone with an ultrasonic cleaner. Solutions of Ba(OH)₂, Sr(OH)₂ and Ca(OH)₂ were made from redistilled water and Ba(OH)₂·8H₂O, Sr(OH)₂·8H₂O, Ca(OH)₂·8H₂O of minimum 98% assay (Kanto Kagaku, Japan) respectively. Distilled water was purged free of O₂ and CO₂ with N₂ gas for 30 min before using in experiments.

In a typical experiment, 50 ml of $Ba(OH)_2$ solution containing 0.0008 moles of Ba^{2+} was added with 20 volume percent of hydrogen peroxide. The W or Mo metal substrate was placed in the solution as shown in schematic representation, Fig. 1. The pH of the solution was adjusted to 12. AMO₄ (A = Ba, Ca, Sr; M = W, Mo) films were fabricated through this simple solution reaction at room temperature for 6–12 h using respective substrate and alkaline earth solutions.

The products were characterized by X-ray diffraction (XRD) and Raman scattering techniques. A standard X-ray diffractometer (MAC Science, Model MXP^{3VA}) with CuK α radiation was operated at 40 kV and 40 mA with the scan rate of 2°/min for a 2 θ range from 10 to 55°. Raman spectra were measured at the 514.5 nm line of an Ar laser at room temperature in a backscattering geome-

Figure 1 (a) Flow chart of the $BaWO_4$ fabrication, (b) schematic illustration of the experimental set up.

try using microprobe optics (designed by Atago Bussan). The laser beam was focused on to the sample surface with a spot size of 1 μ m. The scattered light was analyzed with Jobin Yvon/Atoago Bussan T64000 Triple spectrometer and collected with a liquid-nitrogen-cooled charge coupled device detector. The microstructures of these films were investigated by SEM (Hitachi, S-4000) and Environmental SEM (Nikon, ESEM-2700).

3. Results and discussion

3.1. Formation of AMO₄ films

In general, the corrosion process like dissolution of a metal is normally electrochemical in nature, where electron transfer occurs from metal to solution. Adopting the dissolution by the oxidation of metal substrate, we could fabricate a well crystallized AMO_4 films on the respective substrate with addition of suitable concentration of hydrogen peroxide. H_2O_2 acted as the oxidation and the dissolution agent of M metals even at room temperature. The

Figure 2 X-ray diffraction patterns of AWO₄ films formed in the solution containing 0.0008 M A^{2+} ions at room temperature.

Figure 3 X-ray diffraction patterns of AMoO₄ films formed in the solution containing 0.0008 M A^{2+} ions at a room temperature.

AMO₄ films were not formed in the absence of H_2O_2 . The supply of 20-40 volume percent of H_2O_2 was crucially important. So, it was the first success that AMO₄ films were formed at room temperature without any electrochemical treatment. In our previous works, either an electrical current [23] or hydrothermal [17] treatment was essential to deposit film. The XRD patterns of films formed after the treatment of 3–6 h in Figs. 2 and 3 showed a single phase of crystalline tetragonal AMO₄ films without any impurity phases. The lattice parameters calculated by Cellcalc software version 1.51 developed by. Miura using observed *d*-value and hkl values.

Calculated lattice parameters (Table I) agreed rather well with the JCPDS data [22] and other literature data [23, 24]. The homogeneity of films was confirmed by Raman studies. Fig. 4, the Raman spectra of the BaWO₄ film revealed that the same spectra of tetragonal BaWO₄ for a large crystal grain and for relatively flat part with small crystals, showing the homogeneity in composition.

TABLE I Comparison of the lattice parameters calculated from XRD data and data published in literature

Compound	Lattice parameter	Present work (nm)	Ref. work (nm)	Ref.
BaWO ₄	а	0.565	0.561	
	c	1.238	1.270	[<mark>19</mark>]
SrWO ₄	a	0.544	0.542	
	c	1.203	1.195	[20]
CaWO ₄	a	0.514	0.524	
	с	1.150	1.137	[21]
BaMoO ₄	a	0.558	0.580	
	с	1.282	1.282	
SrMoO ₄	а	0.532	0.539	
	c	1.211	1.202	

Figure 4 Micro Raman spectra for $BaWO_4$ crystals of (a) Large grains (b) Flat part of the film covered by small crystals both were formed at 3 h solution reaction at room temperature.

The difference in relative peak intensity seems to be caused from the orientation-dependence of peak intensity [31].

3.2. Growth mechanism of BaWO₄ film

According to Pourbaix [32], tungsten metal has tendency to dissolve and form WO_4^{2-} ions in an alkaline solution, particularly at high pH ranging from 12–14, even at zero or in negative electrode potential range at room temperatures. This oxidation reaction however, proceeds very slowly at low temperatures in the absence of some externally applied driving forces like supplied current. In the present case the oxidation and dissolution of W substrate was accelerated by the use of H_2O_2 . M metal was attacked by the H_2O_2 to form MO_4^{2-} ions as shown in equation 1, which reacts with A^{2+} ions in the solution and precipitates as AMO₄ on the respective metal substrate (equation 2).

$$M + 2OH^{-} + 3H_2O_2 \rightarrow MO_4^{2-} + 4H_2O$$
 (1)

$$MO_4{}^{2-}+A^{2+} \to AMO_4 \tag{2}$$

Figure 5 Dissolution of the substrate under different conditions; (a) oxidized W substrate immersed in pure water for 3 h, (b) oxidized W substrate immersed in solution containing 20 volume % H₂O₂ and water for 3 h, (c) formation of BaWO₄ films in 20 volume % H₂O₂ and Ba²⁺-containing solution.

Fig. 5 demonstrates those phenomena where W metal substrate was immersed in pure H₂O, the oxidation proceeded negligible as seen in the Fig. 5a. But when 20 volume percent of H₂O₂ was added, the surface of W substrate was corroded drastically yielding porous surface as shown in Fig. 5b, indicating the formation of WO₄²⁻ as indicated in equation 1. This WO₄²⁻ encountered with Ba²⁺ ions to precipitate as BaWO₄ films when Ba²⁺ ions were added to the solution as shown in the Fig. 5c. Since formed MO₄²⁻ ions can be entrapped by A²⁺ ions in the solution, the AMO₄ formation was increased with the concentration of A²⁺ ions as seen in Fig. 6.

The formation of BaWO₄ was smaller when Ba²⁺ concentration was lower as < 0.0004 mole/50 g solution. With solutions having lower pH < 9, WO₄²⁻ formation was very slow, thus the formation of BaWO₄ was also slow. Fig. 7 illustrates schematically the formation and growth mechanism of AMO₄ film as BaMoO₄. The H₂O₂ addition had important roles to oxidize and dissolve W surface, however, excess addition of H₂O₂ above 40 volume% hindered the formation of BaWO₄ as seen in Fig. 8. Probably this was due to the rapid precipitation of Ba²⁺ as barium hydroxide powder in solution. The precipitated alkaline earth hydroxide in solution was confirmed by X-ray diffraction.

Above discussion indicates that the optimum deposition of AMO₄ crystals might be occurred when concentrations of WO₄^{2–} and Ba²⁺ would become optimum that is, the solubility product [WO₄^{2–}] [Ba²⁺] would become maximum in the solution, as seen in Fig. 7.

The feature of AMO₄ formation seems to be similar to that of reported by Slamovich *et al.* for the BaTiO₃ film growth [33]. They indicated that the structural evolution of

Figure 6 Plot of XRD intensity ratio (IB/IW) in (a) BaWO₄ films against mole concentration of Ba²⁺ ions in starting solution, I_B and I_W are peak intensity of BaWO₄ and W, respectively, (b) SrMoO₄ film against mole concentration of Sr²⁺ ions in the starting solution.

Figure 7 A model for BaWO₄ film formation on the W substrate in a solution containing 8 mili mole Ba(OH)₂ and 20 weight percent of H_2O_2 in solution at room temperature.

films was consistent with the Avrami-type nucleation and growth, i.e. particles continuously nucleated throughout the film formation with the termination caused by the impingement of adjacent particles growing at a constant rate. The AWO₄ films showed different grain size with average size of 10 μ m as shown in Fig. 9.

The average thickness measured from the cross section of SEM photographs was about 10–15 μ m after 2–3 h treatment. The AMoO₄ film was consisted with grains of about 6–8 μ m in size but some crystals have grown larger than the film thickness, Fig. 10. This means that the initially formed crystallites grow preferentially in the horizontal direction of the substrate, which provides a greater supply of the tungstate species from the substrate [24]. Thickness of the film increased as the reaction time increased.

4. Conclusions

Crystalline AMO₄ films were fabricated through a simple and low cost solution process at room temperature. Growth of AMO₄ films started with the dissolution of the M-metal substrate, which was accelerated by 20–40 volume percent of oxidizing agent H_2O_2 . The present study demonstrates that high temperature or current supply is not needed to prepare a crystallized ceramic material if an appropriate process and starting materials are chosen. The present novel method should contribute to the development of highly desired low energy-cost processes.

Figure 8 Plot of XRD intensity ratio BaWO₄/W, against different concentration of H₂O₂ solution in the starting solution.

Figure 9 SEM photographs of (a) BaWO₄, (b) SrWO₄, (c) CaWO₄ and (d) cross section of BaWO₄ film obtained from 3 h in solution at room temperature.

Figure 10 SEM photographs of (a) SrMoO₄, (b) BaMoO₄ films fabricated on M substrate in solution at a room temperature for 6 h.

Acknowledgment

We greatly acknowledge the Yoshida Scholarship Foundation, YKK, Japan, for their financial support for one of the authors Dinesh Rangappa. We are also thankful to our colleagues for their helps and advices during the work.

References

- 1. G. BLASSE and W. J. SCHIPPER *Phys. Status Solidi.* A25 (1974) K163.
- 2. G. BLASSE and G. J. DIRKSEN, *J. Solid State Chem.* **36** (1981) 124.
- 3. S. NISHIGAKI, S. YANOK, HI. KATO, T. HIRAI and T. NONOMURA J. Am. Ceram. Soc. 71 (1988) C11.
- 4. B. N. ROY and M. R. ROY Cryst. Res. Technol. 16 (1981) 1267.
- 5. M. NIKL, P. BOHACEK and E. MIHOKOVA *et al., J. Lum.* 87/88 (2000) 1136.
- 6. B. N. GANGULY and M. NICOL, *Phys. Stat. Sol.* **B 79**(2) (1977) 617.
- L. N. DEMIANETS and A. N. LOBACHEV, "Current State of the Art of Hydrothermal Crystal Synthesis," edited by, E. Kaldis in Current Topics in Material Science. Vol. 7, (North-Holland Publishing Company, 1981) p. 483.
- E. F. PASKI and M.W. BLADES, Anal. Chem. 60 (11) (1988) 1224.
- 9. C. H. LEE and S. J. PARK, *J. Mater. Sci. Mater. Electron.* **1**, (1990) 219.
- L. A. WILLS, B. W. WESSELS, D. S. RICHESON and T. J. MARKS, *Appl. Phys. Lett.* 60 (1992) 41.
- 11. C. FELDMAN, J. Soc. Motion Pict. Eng. 67 (1958) 455.
- 12. Y. KASHIWAKURA and O. KANEHISA, Calcium Tungstate Luminescent Thin Film and Fabrication Thereof, Jpn. Pat. No. 1-263188 (1989).
- 13. K. Y. CHEN, L. Y. LEE and D. S. TSAI, *J. Mater. Sci. Lett.* **10** (1991) 1000.
- 14. M. N. KAMALASANAN, S. CHANDRA, P. C. JOSHI and A. MANSINGH, Appl. Phys. Lett. 59 (1991) 3547.

- 15. M. YOSHIMURA, J. Mater. Res. 13, 4 (1998) 796.
- 16. M. YOSHIMURA and J. LIVAGE in MRS Bulletin, **25** (9) (2000)12.
- 17. M. YOSHIMURA, S. E. YOO, M. HAYASHI and N. ISHIZAWA: *Jpn. J. Appl. Phys.* **28** (1989) L2007.
- K. KAJIYOSHI, K. TOMONO, Y. HAMAJI, T. KASANAMI and M. YOSHIMURA, J. Mater. Res. 9 (1994) 2109.
- 19. idem. J. Am. Ceram. Soc. 78 (1995) 1521.
- W. S. CHO, M. YASHIMA, M. KAKIHANA, A. KUDO, T. SAKATA and M. YOSHIMURA: Appl. Phys. Lett. 66 (1995) 1027
- 21. idem. J. Am. Ceram. Soc. 78 (1995) 3110.
- 22. Powder Diffraction File, Card No. 8-0457. International Centre for Diffraction Data, *Newtown Square*, *PA*, 1967. 7.
- W. S. CHO, M. YASHIMA, M. KAKIHANA, A. KUDO, T. SAKATA and M. YOSHIMURA: *Appl. Phys. Lett.* 68 (1996) 13.
- 24. W. S. CHO and M. YOSHIMURA, J. Am. Ceram. Soc. 80 (9) (1997) 2199.
- F. XIAO, K. TSURU, S. HAYAKAWA and A. OSAKA, *Thin Solid Films* 441 (2003) 271.
- 26. C. OHTSUKI, H. IIDA, HAYAKAWA and A. OSAKA, J. Biomed. Mater. Res. 35 (1997) 39.
- 27. Z. CHENG, K. OZAWA, A. MIYAZAKI and H. KIMURA, *J. Am. Ceram. Soc.* **88** (4) (2005) 1023.
- 28. T. NANBA, S. TAKANO, I. YASUI and T. KUDO, J. Solid State Chem. 90 (1) (1991) 47.
- 29. J. S. LEE, S. C. CHOI, Mater. Lett. 58 (2004) 390.
- 30. J. L. WOODHEAD, US Patent no. 4231893 (1980).
- M. LIEGEOIS-DUYCKAERTS and P. TARTE, Spectrochim. Acta A28, (1972) 2037.
- M. POURBAIX Atlas of Electrochemical Equilibria in Aqueous Solution, 2nd ed: pp. 280–85, National Association of Corrosion Engineers, Houston, TX, 1974.
- 33. E. B. SLAMOVICH and I. A. AKSAY J. Am. Ceram. Soc. **79** (1) (1996) 239.

Received 26 August 2004 and accepted 13 April 2005